The Logic of Protest Campaigns:
From Empirical Data to Dynamic Models (and Back)

DOI: 10.17976/jpps/2021.03.10
For citation:

Akhremenko A.S., Belenkov V.E., Petrov A.P. The Logic of Protest Campaigns: From Empirical Data to Dynamic Models (and Back). – Polis. Political Studies. 2021. No. 3. P. 147-165. (In Russ.).

This research is supported by the Russian Science Foundation under grant no. 20-18-00274, National Research University Higher School of Economics. We also express our gratitude to S.A. Zheglov, PhD student of Doctoral School of Political Science in National Research University Higher School of Economics, for help in the analysis of scientific literature and datasets, as well as for help in realization of computational model presented in this article in Python programming language.


The most important political protests are long-lasting campaigns where a large number of various interrelated events and actions – both for protesters and for the authorities – intersect. At the same time, empirical research tools – statistical methods and data sets – are more suitable for the study of one-off events, not related to each other in time. In this article, on the broad basis of existing research, the authors demonstrate two characteristic features of this approach – the phenomenon of “over-aggregation” and the problem of “independent events”. In the first case, all parameters of protest episodes are averaged over the campaign as a whole, or over years or months. In the second case, researchers tend to form a sample of such episodes on the assumption that they are not related to each other. Both of these perspectives lead to the internal dynamics of protest campaigns being ignored, failing to take into account a number of their important features. Among such features are the nature of information asymmetry between protesters and authorities, decision-making based on information about the previous protest events (their size on the first place), the systemic effects of “cascades” and “tipping points” in the development of the protest movement, and the effects of learning. We propose agent-based mathematical model to solve these methodological problems and to depict these dynamics. In the model we present the set of potential protesters as a social network; individuals make decisions about participation in “today’s” protest event on the basis of previous events. This approach considers a protest campaign as a chain of events, and enables empirically testable hypotheses to be formulated inferred not only from theory but also from the results of model experiment. 

protest campaign, political protest, quantitative analysis of protest campaigns, protest datasets, formal modelling, agent-based model.


Akhremenko A., Petrov A. 2020. Modeling the Protest-Repression Nexus. – Proceedings of the MACSPro Workshop 2020. Venice, Italy, October 22-24. CEUR Workshop Proceedings.

Akhremenko A., Yureskul E., Petrov A. 2019. Latent Factors of Protest Participation: A Basic Computational Model. – 2019 Twelfth International Conference “Management of Large-Scale System Development” (MLSD). Moscow: IEEE.

Ayanian A., Tausch N. 2016. How Risk Perception Shapes Collective Action Intentions in Repressive Contexts: A Study of Egyptian Activists during the 2013 Post-coup Uprising. – British Journal of Social Psychology. Vol. 55. No. 4. P. 700-721.

Ayoub P. 2010. Repressing Protest: Threat and Weakness in the European Context, 1975-1989. – Mobilization: An International Quarterly. Vol. 15. No. 4. P. 465-488.

Bell S., Murdie A. 2018. The Apparatus for Violence: Repression, Violent Protest, and Civil War in a Cross-National Framework. – Conflict Management and Peace Science. Vol. 35. No. 4. P. 336-354.

Braithwaite A., Braithwaite J. M., Kucik J. 2015. The Conditioning Effect of Protest History on the Emulation of Nonviolent Conflict. – Journal of Peace Research. Vol. 52. No. 6. P. 697-711.

Buechler S. 2004. The Strange Career of Strain and Breakdown Theories of Collective Action. – The Blackwell Companion to Social Movements. Ed. by D. Snow, S. Soule, H. Kriesi. Malden, MA: Blackwell. P.47-65.

Butcher C., Svensson I. 2014. Manufacturing Dissent. Modernization and the Onset of Major Nonviolent Resistance Campaigns. – Journal of Conflict Resolution. Vol. 60. No. 2. P. 311-339.

Carey S. 2006. The Dynamic Relationship between Protest and Repression. – Political Research Quarterly. Vol. 59. No. 1. P. 1-11.

Carey S. 2010. The Use of Repression as a Response to Domestic Dissent. – Political Studies. Vol. 58. No. 1. P. 167-186.

Casella G., Berger R. 2002. Statistical Inference. 2nd Edition. Pacific Grove: Duxbury, Thomson Learning.

Centola D., Becker J., Brackbill D., Baronchelli A. 2018. Experimental Evidence for Tipping Points in Social Convention. – Science. Vol. 360. No. 6393. P. 1116-1119.

Chenoweth E., Belgioioso M. 2019. The Physics of Dissent and the Effects of Movement Momentum. – Nature Human Behavior. Vol. 3. P. 1088-1095.

Chenoweth E., Lewis O. 2013. Unpacking Nonviolent Campaigns: Introducing the NAVCO 2.0 Dataset. – Journal of Peace Research. Vol. 50. No .3. P. 415-423.

Chenoweth E., Pinckney J., Lewis O. 2018. Days of Rage: Introducing the NAVCO 3.0 Dataset. – Journal of Peace Research. Vol. 55. No. 4. P. 524-534.

Chenoweth E., Stephan M. 2011. Why Civil Resistance Works: The Strategic Logic of Nonviolent Conflict. New York: Columbia University Press.

Clark D., Regan P. 2016. Mass Mobilization Protest Data. – Harvard Dataverse. Version 4.

Davenport C., Soule C., Armstrong D. 2011. Protesting While Black? The Differential Policing of American Activism, 1960 to 1990. – American Sociological Review. Vol. 76. No. 1. P. 152-178.

Davis D., Leeds B., Moore W. 1998. Measuring Dissident and State Behavior: The Intranational Political Interactions (IPI) Project. – The Workshop on Cross-National Data Collection. Texas A&M University.

Demirel-Pegg T. 2017. The Demobilization of the Protest Campaigns. – Oxford Research Encyclopedia of Politics.

Drury J., Reicher S. D. 2000. Collective Action and Psychological Change: The Emergence of New Social Identities. – British Journal of Social Psychology. Vol. 39. No. 4. P. 579-604.

Earl J., Soule S., McCarthy J.2003. Protest Under Fire? Explaining the Policing of Protest. – American Sociological Review. Vol. 68. No. 4. P.581-606.

Epstein J.M. 2002. Modeling Civil Violence: An Agent-Based Computational Approach. – Proceedings of the National Academy of Sciences. Vol. 99. No. 3. P. 7243-7250.

Francisco R. 2009. Dynamics of Conflict. New York: Springer.

Fonoberova M., Fonoberov V., Mezic I., Mezic J., Brantingham P. 2012. Nonlinear Dynamics of Crime and Violence in Urban Settings. – Journal of Artificial Societies and Social Simulation. Vol. 15. No. 1.

Gerber A., Green D., Kaplan E. 2004. The Illusion of Learning from Observational Research. – Problems and Methods in the Study of Politics. Ed. by I. Shapiro, S. Smith, T. Massoud. New York: Cambridge University Press. P. 251-273.

Girod D., Stewart M., Walters M. 2016. Mass Protests and the Resource Curse: The Politics of Demobilization in Rentier Autocracies. – Conflict Management and Peace Science. Advance. Vol. 35. No. 5. P. 503-522.

Granovetter M. 1978. Threshold Models of Collective Behavior. – The American Journal of Sociology. Vol. 83. No. 6. P. 1420-1443.

Grimm J., Harders C. 2018. Unpacking the Effects of Repression: The Evolution of Islamist Repertoires of Contention in Egypt after the Fall of President Morsi. – Social Movement Studies. Vol. 17. No. 1. P. 1-18.

Gurr T. 1970. Why Men Rebel? Princeton, NJ: Princeton University Press.

Hussain M., Howard Ph. 2013. What Best Explains Successful Protest Cascades? ICTs and the Fuzzy Causes of the Arab Spring. – International Studies Review. Vol. 15. No. 1. P. 18-66.

Ives B., Lewis J. 2019. From Rallies to Riots: Why Some Protests Become Violent. – Journal of Conflict Resolution. Vol. 64. No. 5. P. 958-986.

Johnson J., Thyne C. 2018. Squeaky Wheels and Troop Loyalty: How Domestic Protests Influence Coups d’etat, 1951-2005. – Journal of Conflict Resolution. Vol. 62. No. 3. P. 597-625.

Kim J., Hanneman R. 2011. A Computational Model of Worker Protest. – Journal of Artificial Societies and Social Simulation. Vol. 14. No. 3.

Klandermans B. 1984. Mobilization and Participation: Social-Psychological Expansisons of Resource Mobilization Theory. – American Sociological Review. Vol. 49. No. 5. P. 583-600.

Kriesi H., Koopmans R., Duyvendak J., Giugni M. 1995. New Social Movements in Western Europe: A Comparative Analysis. Minneapolis: University of Minnesota Press.

Kuran T. 1989. Sparks and Prairie Fires: A Theory of Unanticipated Political Revolution. – Public Choice. No. 61. P. 41-74.

Lemos C. 2018. Agent-Based Modeling of Social Conflict from Mechanisms to Complex Behavior. Switzerland: Springer International Publishing.

Lohmann S. 1994. The Dynamics of Informational Cascades: The Monday Demonstrations in Leipzig, East Germany, 1989-91. – World Politics. Vol. 47. No. 1. P. 42-101.

Makowsky M., Rubin J. 2013. An Agent-Based Model of Centralized Institutions, Social Network Technology, and Revolution. – PLoS ONE. Vol. 8. No.11: e80380.

McAdam D., Tarrow S., Tilly C. 2001. Dynamics of contention. Cambridge: Cambridge University Press.

Moore W. 1998. Repression and Dissent: Substitution, Context, and Timing. – American Journal of Political Science. Vol. 42. No. 3. P. 851-873.

Moro A. 2016. Understanding the Dynamics of Violent Political Revolutions in an Agent-Based Framework. – PLoS ONE. Vol. 11. No. 4: e0154175.

Nardulli P., Althaus S., Hayes M. 2015. A Progressive Supervised-learning Approach to Generating Rich Civil Strife Data. – Sociological Methodology. Vol. 45. No. 1. P. 148-183.

Opp K-D., Roehl W. 1990. Repression, Micromobilization, and Political Protest. – Social Forces. Vol. 69. No. 2. P. 521-524.

Pierskalla J. 2010. Protest, Deterrence, and Escalation: The Strategic Calculus of Government Repression. – Journal of Conflict Resolution. Vol. 54. No. 1. P. 117-145.

Raleigh C., Linke A., Hegre H., Karlsen J. 2010. Introducing ACLED – Armed Conflict Location and Event Data. – Journal of Peace Research. Vol. 47. No. 5. P. 651-660.

Rasler K. 1996. Concessions, Repression, and Political Protest in the Iranian Revolution. – American Sociological Review. Vol. 61. No. 1. P. 132-152.

Rasler K. 2017. Dynamics, Endogeneity, and Complexity in Protest Campaigns. – Oxford Research Encyclopedia of Politics. URL:

Ross B., Pilz L., Cabrera B., Brachten F., Neubaum G., Stieglitz S. 2019. Are Social Bots a Real Threat? an Agent-Based Model of the Spiral of Silence to Analyse the Impact of Manipulative Actors in Social Networks. – European Journal of Information System. Vol. 28. No. 4. P. 394-412.

Salehyan I. Cullen S., Hamner J., Case C., Linebarger C., Stull E., Williams J. 2012. Social Conflict in Africa: A New Database. – International Interactions. Vol. 38. No. 4. P. 503-511.

Schelling T. 1969. Models of Segregation. – The American Economic Review. Vol. 59. No. 2. P. 488-493.

Schelling T. 1971. Dynamic Models of Segregation. – Journal of Mathematical Sociology. Vol. 1. P. 143-186.

Shadmehr M. 2014. Mobilization, Repression, and Revolution: Grievances and Opportunities in Contentious Politics. – Journal of Politics. Vol. 76. No. 3. P.621-635.

Siegel D. 2011. When Does Repression Work? Collective Action and Social Networks. – Journal of Politics. Vol. 73. No. 4. P. 993-1010.

Soares M., Barbosa M., Matos R., Mendes S. 2018. Public Protest and Police Violence: Moral Disengagement and Its Role in Police Repression of Public Demonstrations in Portugal. – Peace and Conflict: Journal of Peace Psychology. Vol. 24. P. 27-35.

Slantchev B., Matush K. 2020. The Authoritarian Wager: Political Action and the Sudden Collapse of Repression. – Comparative Political Studies. Vol. 53. No. 2. P. 214-252.

Sturmer S., Simon B. 2004. The Role of Collective Identification in Social Movement Participation: A Panel Study in the Context of the German Gay Movement. – Personality and Social Psychology Bulletin. Vol. 30. No. 3. P. 263-277.

Sullivan C. 2016. Undermining Resistance: Mobilization, Repression, and the Enforcement of Political Order. – Journal of Conflict Resolution. Vol. 60. No. 7. P. 1163-1190.

Sutton J., Butcher C., Svensson I. 2014. Explaining Political Jiu-Jitsu: Institution-Building and the Outcomes of Regime Violence against Unarmed Protests. – Journal of Peace Research. Vol. 51. No. 5. P. 559-573.

Van Stekelenburg J., Klandermans B. 2017. Individuals in Movements: A Social Psychology of Contention. – Handbook of Social Movements across Disciplines. Ed. by C. Roggeband, B. Klandermans. Cham: Springer. P. 103-139.

Watts D., Strogatz S. 1998. Collective Dynamics of Small-World Networks. – Nature. Vol. 393. No. 6684. P. 440-442.

Weidmann N., Rod E. 2019. Chapter 4: Coding Protest Events in Autocracies. – The Internet and Political Protest in Autocracies. New York: Oxford University Press. P. 35-60.

Will M., Groeneveld J., Frank K., Muller B. 2020. Combining Social Network Analysis and Agent-Based Modelling to Explore Dynamics of Human Interaction: A Review. – Socio-Environmental Systems Modelling. Vol. 2. 16325.

Wooldridge J. 2013. Introductory Econometrics. A Modern Approach. Mason: South Western.


Akhremenko A., Petrov A., Zheglov S. 2021. How Information and Communication Technologies Change Trends in Political Processes Modeling: Towards an Agent-Based Approach. – Political Science (RU). No. 1. P. 12-45. (In Russ.)

Korotaev A., Isaev L., Vasiliev A. 2015. Quantitative Analysis of 2013-2014 Revolutionary Wave. – Sociological Studies. No. 8. P.119-127. (In Russ.) URL: (accessed 11.03.2021).

LITEX. Vol. 4. No. 2. P. 80-100. (In Russ.)

Rozov N. 2017. Crisis and Revolution: Fields of Interaction, Actors’ Strategies, and Trajectories of Conflict Dynamics. – Polis. Political Studies. No. 6. P. 92-108. (In Russ.) 

Content No. 3, 2021

See also:

Bezvikonnaya Ye.V.,
Systemico-Synergetic Model of a Political System. – Polis. Political Studies. 2009. No3

Okunev I.Yu.,
The Stanford Model of Development Crisis. – Polis. Political Studies. 2009. No3

Nechayev V.D.,
The Functioning of the Two-Level Models of the Local Self-Government Territorial Organization in RF (With the Voronezhskaya and Orlovskaya Regions as Example). – Polis. Political Studies. 2006. No3

Grinin L.Ye., Korotaev A.V.,
Urbanization and Political Instability: to the Development of Mathematical Models of Political Processes. – Polis. Political Studies. 2009. No4

Akhremenko A.S.,
Dynamics Aproach to Mathematical Modelling of Political Stability. – Polis. Political Studies. 2009. No3



   2020      2019      2018      2017      2016   
   2015      2014      2013      2012      2011   
   2010      2009      2008      2007      2006   
   2005      2004      2003      2002      2001   
   2000      1999      1998      1997      1996   
   1995      1994      1993      1992      1991